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Nanoscopic liquid bridges exposed to a torsional strain
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In this paper we investigate the response to a torsional strain of a molecularly thin film of spherically
symmetric molecules confined to a chemically heterogeneous slit pore by means of Monte Carlo simulations in
the grand canonical ensemble. The slit pore comprises two identical plane-parallel solid substrates, the fluid-
substrate interaction is purely repulsive except for elliptic regions attracting fluid molecules. Under favorable
thermodynamic conditions the confined film consists of fluid bridges where the molecules are preferentially
adsorbed by the attractive elliptic regions, and span the gap between the opposite substrate surfaces. By
rotating the upper substrate while holding the lower one in position, bridge phases can be exposed to a torsional
strain 0<u<p/2 and the associated torsional stressTu of the ~fluidic! bridge phases can be calculated from
molecular expressions. The obtained stress curveTu(u) is qualitatively similar to the one characteristic of
sheared confined films: as the torsion strain increases,Tu rises to a maximum~yield point! and then decays
monotonically to zero. By changing the ellipses’ aspect ratio while keeping their area constant, we also
investigate the influence of the attractive elliptic patterns’ shape onTu(u).

DOI: 10.1103/PhysRevE.68.066103 PACS number~s!: 62.25.1g, 81.40.Pq, 61.46.1w, 68.55.2a
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I. INTRODUCTION

The confinement of a fluid to spaces of nanoscopic
mensions imposes spatial inhomogeneities that have
found consequences on the phase behavior of the fluid@1#.
The wealth of new phenomena induced by confinement
been the subject of numerous studies in the last decade
ther for simple fluids@2–4# or for more complex cases suc
as alkane@5# or liquid-crystal films@6#. The behavior of con-
fined fluids becomes even more complex when the confin
surfaces are chemically@7,8# or geometrically@9# decorated.
For example, one can observe the formation of ‘‘brid
phases’’ composed of alternating high~er!and low~er! density
portions of fluids. It has now been established that th
nanoscopic fluid bridges form as a generic thermodyna
phase in confined systems with structured substrates@10–
16#.

Molecularly thin films also show a fascinating rheologic
behavior that is important in many basic and applied pr
lems such as adhesion, lubrication, and friction. It has the
fore been under intensive study in recent years, eit
through theoretical approaches@17–26# or with the help of
experimental devices such as the atomic force microsc
~AFM! @27–30# or the surface force apparatus~SFA! @31–
36#. A particularly interesting phenomenon is the so-cal
stick-slip motion that has been observed when the confi
fluid is exposed to a shear stress. Experimentally the film
sheared by sliding the confining walls over one anoth
When the walls are separated by only a few molecular dia
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eters, sliding cannot be initiated until a critical stress~the
so-called yield stress of the film! is exceeded. The walls the
slip over each other, eventually coming to rest, until the cr
cal stress is once again attained, so that this stick-slip c
repeats itself periodically@37–43#.

For reasons well detailed in Ref.@15# almost all the pre-
vious theoretical works done on confined fluids have be
restricted to high symmetry systems, that is, systems wh
the fluid properties are translationally invariant in at least o
direction parallel to the substrates surfaces. As a con
quence of this symmetry condition, one could only study
response of fluid bridges to a shear strain in the direct
perpendicular to the direction of the translational invarian
@43,44#. Recent works by Sacquinet al. showed how one
could study the phase behavior of fluids confined in lo
symmetry systems using a thermodynamic-integration p
cess @15,16#. In this paper we shall start from the low
symmetry system described in Ref.@15# and be concerned
with the response of finite size fluid bridges exposed to
torsional strain. In this study made on fluid bridges und
torsion, we shall focus on the comparison of our results w
those obtained in shearing experiments, and also on the
fect of the fluid bridge’s shape when applying the torsion
strain.

II. MODEL SYSTEM

The simulation model consists of ‘‘simple’’ fluid mol
ecules~i.e., spherically symmetric molecules! confined be-
tween the surfaces of two solid substrates. In principle, fl
molecules interact with each other in a pairwise addit
fashion via the Lennard-Jones~LJ!~12,6! potential,

u~r !54eF S s

r D 12

2S s

r D 6G , ~1!
©2003 The American Physical Society03-1
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SACQUIN-MORA, FUCHS, AND SCHOEN PHYSICAL REVIEW E68, 066103 ~2003!
wheree is the well depth,s the ‘‘diameter’’ of a molecule,
and r the distance between the centers of a pair of partic
However, for reasons detailed in Ref.@45# we replaceu(r ) in
the subsequent Monte Carlo simulations in the grand can
cal ensemble~GCEMC! by

u~r !→uf f~r !

5H u~r !2u~r c!1du~r !/drur 5r c
~r c2r !, r<r c

0, r .r c ,

~2!

r c being a cutoff radius whose value will be specified belo
From Eq.~2! it is clear that unlikeu(r ), uf f(r ) is explicitly
short range.

The confining substrates are both planar, separated
distancesz along thez axis of the laboratory coordinate sy
tem and semi-infinite, occupying half spaces2`,z<
2sz/2 andsz/2<z,`, respectively. They are composed
like atoms interacting with fluid molecules according to t
LJ~12,6! potential where the same values ofe and s are
employed as for the fluid-fluid interaction. We employ
mean-field approximation for the fluid-substrate potential
ergy achieved by averaging the~original! fluid-substrate in-
teractions over the positions of the substrate atoms in thex-y
plane. This leads to

F̃ [k]~z!5
2perss

3

3 F 2

15S s

sz/26zD
9

2S s

usz/26zu D
3G

5:w rep
[k]~z!2watt

[k]~z!, ~3!

where the plus and minus signs refer to lower (k51, zw5
2sz/2) and upper (k52, zw51sz/2) substrates, respec
tively, andrs is the~volume! number density of wall atoms
For simplicity we takerss

351 throughout this work. Since
we treat the substrates as semi-infinite solids, the flu
substrate attraction is long range, that is,watt

[k] (z)}z23 @see
Eq. ~3!#.

To model substrate surfaces with imprinted chemi
nanopatterns~see Fig. 1! we modify Eq.~3! according to

F̃ [k]~z!→F [k]~r!5w rep
[k]~z!2s[k]~x,y;A,B,k!watt

[k]~z!

5w rep
[k]~z!2fatt

[k]~r!, ~4!

wherer denotes the~vector! position of a fluid molecule and
the ‘‘switching’’ function

s[k]~x,y;A,B,k!5
1

11expFkS X[k]2

A2
1

Y[k]2

B2
21D G ~5!

is introduced as a continuous representation of the Heavi
function ~i.e., the Fermi function@46#! such thatF [k] (r) de-
scribes the interaction between a fluid molecule and an
finitesimally smooth, repulsive solid surface decorated w
an attractive elliptical area of~fixed! semiaxisA andB ~and
infinite height in the 6z directions! centered at (0,0
06610
s.
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6sz/2). In Eq.~5!, k>0 is a measure of the ‘‘softness’’ with
which the attractive part ofF [k] (r) is turned off as a fluid
molecule moves away from the center of the elliptical ar
that is from the point (0,0) in thex-y plane ~see Fig. 2 in
Ref. @15#!. We also have

X[1]5x cos~2u/2!1y sin~2u/2!,

Y[1]5y cos~2u/2!2x sin~2u/2!, ~6!

for the lower substrate and

X[2]5x cos~u/2!1y sin~u/2!,

Y[2]5y cos~u/2!2x sin~u/2!, ~7!

for the upper one, in order to model the angleu between the
large axis of the two ellipses~see Fig. 1!.

III. THERMOMECHANICAL PROPERTIES

A. Thermodynamic considerations

From a thermodynamic perspective we refer to the ‘‘s
tem’’ as a finite lamella of the confined~infinite in thex and
y directions! fluid having dimensionssx3sy3sz . The re-
mainder of the film and the walls constitute the environme
The lamella can exchange compressional work with the
vironment by alteringsz or by changing the distance betwee
the imaginary planes located atx/sx560.5 and y/sy5
60.5, which act like virtual ‘‘pistons.’’ In addition, the sys
tem can be exposed to a torsional strainu @see Eqs.~6! and
~7!#. The mechanical work due to infinitesimal compre
sional and torsional strains can be expressed as

dW5(
a

AaTaadsa1VTudu, ~8!

FIG. 1. A schematic diagram of a simple fluid~black circles!
confined by two chemically decorated substrates. Outside of
elliptic attractive regions~in gray! the fluid-substrate interaction i
purely repulsive.
3-2
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NANOSCOPIC LIQUID BRIDGES EXPOSED TO A . . . PHYSICAL REVIEW E68, 066103 ~2003!
whereV5sxsysz is the volume of the lamella,Aa the area of
the a directed face of the lamella, andTaa (a5x,y,z) are
diagonal elements of the stress tensorT. The absence o
off-diagonal elements ofT signifies that we ignore work du
to shear forces in this study. In Eq.~8! we also introduce the
torsional stressTu conjugate to the torsional strainu. In
addition, the lamella is materially and thermally coupled
its environment, that is, thermodynamically it constitutes
open system. Hence, reversible transformations of
lamella are governed by the grand potential whose exact
ferential is given by

dV~T,m,V,u!52SdT2Ndm1dW. ~9!

In Eq. ~9!, S denotes entropy,T represents temperature, an
N is the number of fluid molecules.

The link between the macroscopic and molecular scale
the well-known statistical thermodynamic relation@46#

V52b21ln J52b21ln(
N50

`
exp~bmN!

L3NN!
Z, ~10!

whereb51/kBT (kB Boltzmann’s constant!, L is the ther-
mal de Broglie wavelength and the far right side obtains a
the usual integration over momentum subspace. The con
ration integral is given by

Z5E
VN

dr exp@2bU~rN!#. ~11!

In Eq. ~11!, rN
ª$r1 ,r2 , . . . ,rN% denotes a particular con

figuration ofN fluid molecules and

U~rN!5
1

2 (
i 51

N

(
j 51Þ i

N

uf f~r i j !1 (
k51

2

(
i 51

N

@w rep
[k]~zi !

2s[k]~x,y;A,B,k!watt
[k]~zi !#5UFF1UFS ~12!

is the configurational energy.

B. Molecular expression for the torsional stress

From Eq.~9! we have the purely thermodynamic expre
sion

VTu5S ]V

]u D
T,m,V

. ~13!

Combining Eq.~13! with the statistical expressions given
Eqs.~10!–~12!, we obtain

Tu52~VbJ!21 (
N50

`
exp~bmN!

L3NN!
S ]Z

]u D
T,V

52~VJ!21 (
N50

`
exp~bmN!

L3NN!
E

VN
dr exp@2bU~rN!#

3S ]UFS

]u D
T,V

. ~14!
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Since the switching functions is the only part of the configu-
rational energy that depends onu, we eventually have

Tu5
1

V K (
k51

2

(
i 51

N

2S ]s[k]~xi ,yi !

]u Dwatt
[k]~zi !L

52
1

V K (
k51

2

Fu
[k] L . ~15!

We can notice that sinceV(u)5V(2u), i.e., the grand po-
tential is an even function of the torsion strain, the torsi
stressTu is an odd function ofu.

Another quantity of interest in the context of this work
the torsion modulus

mu5
1

V S ]2V

]u2 D
T,m,V

5
1

V S ]Tu

]u D
T,m,V

, ~16!

which is the equivalent in torsion to the shear modulusc44
@47# used in studies done on the shearing of confined flu
By a calculation parallel to the one detailed in Ref.@42# one
can show from Eqs.~10!–~15! and ~16! that

mu5
1

V K ]2UFS

]u2 L 2
b

V
@^~Fu

[1]1Fu
[2] !2&2^Fu

[1]1Fu
[2]&2#.

~17!

From Eqs.~15! and ~17! it is also clear that

]2UFS

]u2
5

]Fu
[1]

]u
1

]Fu
[2]

]u
. ~18!

C. Technical aspects

We carried out GCEMC where the chemical potentialm,
temperatureT, volumeV, and torsional strainu are fixed. As
explained in detail in Ref.@45#, the generation of a Markov
chain of m51, . . . ,M configurations$rm

N% in GCEMC pro-
ceeds in pairs of events: trial displacements and attemp
create or destroy fluid molecules. Both events are reali
according to the probability density governing the grand
nonical ensemble. If a particular configurationk containsNk
fluid molecules, the sequence ofNk displacements followed
by Nk creation-destruction attempts constitutes a ‘‘GCEM
cycle.’’ Results presented below are based upon runs
106–107 MC cycles withN.300. In all the simulations we
set r c52.5 @see Eq.~2!#.

In what follows all quantities will be given in the custom
ary dimensionless~i.e., ‘‘reduced’’! units: length is expresse
in units of s, energy in units ofe, and temperature in units
of e/kB ; other quantities are expressed in terms of suita
combination of these ‘‘basic’’ quantities. We employ sta
dard periodic boundary conditions at the planesx56sx/2,
y56sy/2 wheresx5sy530. These latter values are larg
enough~if A andB are small enough! to mimic an infinitely
large system with asingle isolated attractive elliptic region
per substrate. Hence, in the actual simulations we asso
the computational cell with the fluid lamella introduced
3-3
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SACQUIN-MORA, FUCHS, AND SCHOEN PHYSICAL REVIEW E68, 066103 ~2003!
Sec. III A. We have for the ‘‘switching parameter’’k5125,
which causess(x,y;A,B,k) to vary between zero~i.e., no
fluid-substrate attraction! and one~i.e., full fluid-substrate
interaction! @see Eqs.~4! and ~5!# over an elliptical shell of
thicknessDr .0.2.

IV. RESULTS

Our results were obtained forT50.70 andm528.0. Un-
der the present thermodynamic conditions, and for 0<u
<p/2 ~the torsion angle value is limited by the symmetry
the system!, the confined fluid forms a ‘‘bridge’’ phase; tha
is, a high~er!-density portion of the fluid is stabilized be
tween the adsorbing elliptic patterns on the substra
whereas a low~er!-density regime exists over their repulsiv
outer part. This characteristic structure is illustrated by
snapshots of two representative configurations foru50 and
u5p/2 in Fig. 2, and by the contour plots of the local de
sity r(x,y,z) in Figs. 3 and 4. The plots in Fig. 3~a! and 3~b!
show sequences of ‘‘islands’’ along thez axis surrounded by
a closed line of lower density. The islands are well resolv
and separated by a distance of approximatelyDz.1 between
centers of neighboring islands. They indicate stratification
the fluid in the direction perpendicular to the substrates~i.e.,
along thez axis!. In the symmetric caseu50, the high-
density islands have roughly the same size in transverse
rections~i.e., x or y) @see Figs. 3~a! and 3~b!#; while for u
5p/2, their shape changes asz goes from23 to 3 @see Figs.
4~a! and 4~b!#, thus reflecting the rotation of the attractiv
elliptic patterns on the substrates (uzu53).

Bridge phases may coexist with liquidlike or gaslik
phases characterized by high~er!- and low~er!-density fluids,
respectively, occupying the entire volume of the syst
~similar to Fig. 4~a! and 4~c! in Ref. @15#!

A. Torsion curves: general features

The key quantity calculated in the present Monte Ca
simulations is the torsional stressTu(u) accessible via the
Eqs. ~13!–~15!. A typical torsion curve is shown in Fig. 5

FIG. 2. Snapshots of two representative configurations of
system forT50.70, m528.00, sz56.0, A58, andB53.125. ~a!
u50, ~b! u5p/2.
06610
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regardless of the thermodynamic state and the shape@i.e., A
and B, see Eq.~5!# of the elliptic pattern, it exhibits the
following features.

~1! For vanishing torsional strain~i.e., u50), Tu[0 for
symmetry reasons.

~2! If exposed to a sufficiently small torsional strainu,
Tu(u) depends linearly onu according to Hooke’s law.

~3! As the torsional strain increases, the bridge respo
increasingly nonlinearly so that the torsional stress reach
maximum, declines, and eventually vanishes. The maxim
of the torsion stress curve determines a yield po
(uyd,Tu

yd).
~4! For symmetry reasons we also haveTu(p/2)[0.
These general characteristics have also been obse

previously in the case of stress curves for simple fluid fil
confined between planar-parallel substrates, when these
were exposed to a shear strain. In these latter calculation
confining substrates were either chemically homogene
but atomically structured~i.e., discrete! @42,17,37,22,41,24#
or decorated with alternating striplike domains composed
different solid materials@43,44#. As u departs from 0 the
fluid bridge becomes less elastic, eventually deforming p
tically, until Tu reaches a maximum where the torsion mod
lus mu vanishes@see Eq.~16!#. Tu

yd is the maximum torsion
stress the fluid bridge can sustain when rotating one subs

e

FIG. 3. Contour linesr50.25 ~-!, 0.75 ~–! for T50.70, m5
28.00, sz56.0, A58, B53.125, andu50. ~a! r(y,z) in the x
50 plane,~b! r(x,z) in the y50 plane.
3-4
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NANOSCOPIC LIQUID BRIDGES EXPOSED TO A . . . PHYSICAL REVIEW E68, 066103 ~2003!
over the other while the thermodynamic state variablesm,
T, andsz) are held fixed. These results lead us to think th
should also exist for fluids exposed to a torsional strai
rotating and a sticking regime that are separated by the y
point (uyd,Tu

yd), and similar to the sticking and slipping re

FIG. 4. Contour linesr50.25 ~-!, 0.75 ~–! for T50.70, m
528.00, sz56.0, A58, B53.125, andu5p/2. ~a! r(y,z) in the
X[1]50 plane,~b! r(x,z) in the Y[1]50 plane@see Eq.~6! for the
definitions ofX[1] andY[1] ].

FIG. 5. A typical torsion stress curveTu(u* ) ~where u*
5u/p) for A58 andC53.125. The solid line is intended to guid
the eye and the dotted line corresponds to the Hookean limit.
06610
e
a
ld

gimes encountered for sheared confined fluids. Thermo
namic states foru<uyd are mechanically stable so that th
walls ‘‘stick’’ to the fluid film. When u>uyd these states
become mechanically unstable and the walls can ‘‘rota
freely over the surface of the film~see Ref.@42#!. From the
definition of the torsion modulus in Eq.~16! and the fact that
the yield point represents a maximum of the torsion str
curve it also follows thatmu.0 in the sticking regime and
that mu,0 in the rotating regime.

Because of the linear dependance inu of Tu at small
deformations, the slope of the torsion curve foru50 gives
us mu(0). It provides an information on the stiffness of th
fluid bridge at rest~i.e., whenu50), that is, its ability to
sustain a torsional strain. In Fig. 5 the torsion modu
mu(0) computed from the expression in Eq.~17! has been
used to determine the tangent to the shear stress curveu
50, which also illustrates the reliability of our calculation

Furthermore, for larger substrates separations, we obs
a decrease of the torsional yield stressTu

yd and an increase o
the yield strainuyd ~see Fig. 6!. This behavior is again quali
tatively similar to the one observed earlier for confined flu
exposed to a shear strain~see Refs.@17,41# and Fig. 6~a! in
Ref. @43#!. It can be rationalized by an argument similar
the one given in Ref.@41#: as the number of layers in th
bridge increases, the structure of the central layers beco
less ordered~even though the elliptic bridges do not sho
any crystalline structure!, and it takes less force to wring th
fluid bridge.

However in Ref.@43# the yield stress obtained by shearin
monolayer up to trilayer bridges scales approximately w
the inverse wall separation, while in our case we observ
much faster decay of the maximum torsional stress w
sz

23 . If the bridges were solidlike their torsional stiffnes
would scale linearly with their cross-sectional area and
versely with their length, the reason being that the area
measure for how many~metaphoric! springs act ‘‘in parallel’’
holding the particles together, while the length of the brid
indicates how many springs act ‘‘in series.’’ Therefore wh
we increase the size of a solid bridge, while maintaining
shape, its effective torsional stiffness will grow. Howeve

FIG. 6. Torsion stressTu(u* ) for A58, B53.125, andsz

54.0 (m), sz56.0 (s), sz510.0 (j). Solid lines are intended
only to guide the eye.
3-5
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SACQUIN-MORA, FUCHS, AND SCHOEN PHYSICAL REVIEW E68, 066103 ~2003!
here we observe a decrease of the torsional yield stress
1/sz

3 , which means that the torsional stiffness of the brid
becomes weaker with increasing the system size even i
assume proportionality with the area of contact, thus emp
sizing the nonsolid character of the bridges formed under
present conditions.

We also note that the values of the torsional stress
tained by the elliptic bridges are much smaller~one to two
orders of magnitude! compared with the shear stress valu
supported by fluid bridges as reported in Ref.@43#. Still, a
more quantitative comparison does not make too much s
at this point since both the systems studied in the ea
shear work and the observables differ from those conside
here. The lower value ofTu

yd and its faster decay with th
wall separation can be explained qualitatively as follow
The deformation of fluid by shearing leads to a perturbat
of the fluid bridge’s structure in only one dimension, name
in the direction in which the shear strain is applied. On
other hand, the torsion of fluid bridges induces a tw
dimensional displacement of the particles in the fluid brid
~that is, along the two lateral directionsx andy), so that the
associated perturbation of its structure is much more p
nounced in this case than for sheared bridges. As a co
quence the ability of fluid bridges to resist torsional def
mations is greatly reduced in comparison with their ability
resist shear deformation, as long as the shear strain is ap
only in one dimension as in all the previous studies.

B. The impact of the ellipses shape

In our model shape and size of the attractive ellip
chemical pattern decorating the substrates turns out to h
significant consequences for the yield-point locati
(uyd,Tu

yd). As we already mentioned in Sec. IV A, earlie
works on fluid bridges showed that the area of the attrac
chemical patterns has to be large enough for bridge m
phologies to be thermodynamically stable. In this work
fixed the area of the ellipses toABp525p and looked at the
torsion curves for different values of the large semiaxisA
~see Fig. 7!. For the subsequent discussion it is convenien
introduce the aspect ratior a5A/B.1 of the ellipses.

Once again we can check the good agreement betwee
values ofmu(0) obtained from Eq.~17! and the slope of the
shear stress curve atu50 ~see the dotted lines in Fig. 7!.
More significantly, this time they also reveal substantial d
viations from Hookean behavior at very small torsion
strains. For example, the plastic regime begins alread
u/p*0.05 whenr a*2 @see Figs. 5 and 7~c!–~e!#. As we
move away from the perfectly symmetric caser a51, where
the chemical patterns degenerate to circles, the devia
from the elastic linear behavior while increasingu occurs
earlier.

For fixed sz56.0 one can see from Table I thatuyd de-
creases whileTu

yd increases monotonically with increasin
aspect ratio. We observe an evolution from ‘‘soft’’ bridg
with low Tu

yd and largeruyd to more ‘‘rigid’’ ones whereTu
yd

is larger butuyd is smaller. This ‘‘rigidity’’ is also reflected
by the increase ofmu(0) with r a ~see Table I!.
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We also tried to renormalize the stress curves plotted
Fig. 8 in order to know whether or not the results obtained
Bock and Schoen in Ref.@43# concerning the universality o
the shear stress curves could also be applied to twisted
bridges. However our renormalized data failed to fall on
unique curve or to coincide with the universal curve obtain
in Ref. @43#, thus pointing out another difference between t
responses to shear and torsional deformations of fl
bridges. The increased perturbation of the bridge’s struc
that we pointed out in Sec. IV A precludes the use of a sm
strain approximation to describe the torsional curves in
range 0<u<uyd similar to the one suggested by Bock an
Schoen@43#.

V. DISCUSSION AND CONCLUSIONS

In this paper we employ GCEMC simulations to inves
gate the rheological properties of a fluid confined betwe
nanopatterned substrates of low symmetry. The interac
between fluid molecules and the planar substrates is pu
repulsive, i.e., the solid is not wetted by the fluid. Howev
each substrate is decorated with an elliptic chemical pat
that adsorbs fluid molecules preferentially. Under favora
thermodynamic conditions a higher-density portion of t
confined fluid stabilized by the attractive chemical pattern
surrounded by a lower-density portion supported by the
pulsive parts of the substrates, thus forming what we ca
bridge phase. By rotating the elliptic patterns in oppos
directions, these bridge phases can be exposed to a tors
strainu and the associated torsional stressTu can be calcu-
lated from molecular expressions.

As we can see in all our plots ofTu(u), the elliptic
bridges can sustain a nonvanishing torsional strain, e
though they have a noncrystalline structure. This propert
a direct consequence of the lack of cylindrical symmetry
the system and can be compared to the way the fluid brid
in Ref. @43# show a resistance tosheardeformations becaus
of their inhomogeneity in the direction of the applied she
stress. Furthermore, the torsion curves obtained for twis
fluid bridges arequalitatively similar to those obtained fo
confined sheared fluids~being solidlike or not! in that they
exhibit a Hookean regime for small torsional strains and
yield point on account of an increasingly plastic response
higher angles~see Fig. 5!. Yet when we begin to deform fluid
bridges, the plastic regime appears much earlier in the c
of torsion than for shearing. The evolution of the yield to
sional stress when increasing the substrates’ separatio
also the same for twisted and sheared fluids. In both case
observe a decrease ofTu ~see Fig. 6!, but the decay of the
yield stress is much faster in the case of torsion~whereTu

yd

scales approximately with 1/sz
3). It also turns out that the

values of torsional stresses we obtained during this st
were always much smaller than any shear stress values
tained in previous works. These two properties can be c
nected to the fact that torsional deformations induce a m
greater perturbation in the bridge’s inner structure than sh
deformations.

When modifying the ellipses shape, i.e., their aspect ra
r a , the evolution in the yield point permits us to distinguis
3-6
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FIG. 7. Torsion stress curvesTu(u* ) for sz56.0, AB525, and different aspect ratios.~a! r a51.5625, ~b! r a51.9600, ~c! r a

53.2400,~d! r a54.0000, and~e! r a55.0625. The solid line is intended to guide the eye while the dotted one corresponds to the Ho
limit.
a
is

n

uid

of
er
ate
between soft and rigid bridges. Asr a increases we have
continuous change from soft bridges, which are easily d
torted ~high uyd and lowTu

yd), to more rigid ones~low uyd

and highTu
yd). The renormalization of the different torsio

curves obtained when changingr a within the theory of cor-
responding states@46# fails to give satisfying results, which
06610
-
is another consequence of the increased sensitivity of fl
bridges to torsional deformation compared to shearing.

Many possibilities now appear for future investigations
fluid bridges under torsion. First, we intend to work furth
on the stick-rotate transition and develop a more adequ
ensemble with a fixed torsional stressTu where the torsional
3-7
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strainu can fluctuate, similar to the grand isostress ensem
introduced by Bordarieret al. @42#. Another subject of inter-
est will be the phase behavior of a fluid between lo
symmetry substrates. Using the thermodynamic integra
method for computing the grand potentialV in such systems
that has already been developed in Ref.@15#, different stud-
ies on the combined effects of torsion and chemical poten
@12,13# can be made. Eventually, a last but very interest
direction will be to develop an analysis of phase transitio
induced by the torsion of fluid bridges with an approa
similar to what has been done in Ref.@48#, that is, using

TABLE I. Evolution of the yield point’s coordinates (uyd,Tu
yd)

and of the torsion modulus at restmu(0) @see Eq.~17!# when modi-
fying the aspect ratior a of elliptic patterns with a constant are
ABp525p.

r a uyd Tu
yd mu(0)

1.5625 0.22p 5.844831024 4.686931023

1.9600 0.18p 1.068731023 1.0885331022

2.5600 0.15p 1.686131023 2.270831022

3.2400 0.14p 2.105431023 3.835131022

4.0000 0.13p 2.386431023 6.006131022

5.0625 0.08p 2.430431023 8.137731022
,

n

a

06610
le

-
n

al
g
s

Landau’s phenomenological theory of phase transitions
the torsion modulusmu as an order parameter.
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FIG. 8. Torsion stress curves as in Fig. 6 but on the same sc
(h) r a51.5625, (j) r a51.9600, (s) r a52.5600, (d) r a

53.2400, (n) r a54.0000, and (m) r a55.0625.
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