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Nanoscopic liquid bridges exposed to a torsional strain
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In this paper we investigate the response to a torsional strain of a molecularly thin film of spherically
symmetric molecules confined to a chemically heterogeneous slit pore by means of Monte Carlo simulations in
the grand canonical ensemble. The slit pore comprises two identical plane-parallel solid substrates, the fluid-
substrate interaction is purely repulsive except for elliptic regions attracting fluid molecules. Under favorable
thermodynamic conditions the confined film consists of fluid bridges where the molecules are preferentially
adsorbed by the attractive elliptic regions, and span the gap between the opposite substrate surfaces. By
rotating the upper substrate while holding the lower one in position, bridge phases can be exposed to a torsional
strain 0< < /2 and the associated torsional str@ssof the (fluidic) bridge phases can be calculated from
molecular expressions. The obtained stress cli(@) is qualitatively similar to the one characteristic of
sheared confined films: as the torsion strain increabgsises to a maximuntyield poing and then decays
monotonically to zero. By changing the ellipses’ aspect ratio while keeping their area constant, we also
investigate the influence of the attractive elliptic patterns’ shap& 4#).
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[. INTRODUCTION eters, sliding cannot be initiated until a critical stréfse
so-called yield stress of the filnis exceeded. The walls then
The confinement of a fluid to spaces of nanoscopic dislip over each other, eventually coming to rest, until the criti-
mensions imposes spatial inhomogeneities that have préal stress is once again attained, so that this stick-slip cycle
found consequences on the phase behavior of the ffilid  repeats itself periodicall{37—-43.
The wealth of new phenomena induced by confinement has FOr reasons well detailed in R¢fL5] almost all the pre-
been the subject of numerous studies in the last decade, &{ious theoretical works done on confined fluids have been
ther for simple fluidg2—4] or for more complex cases such restricted to high symmetry systems, that is, systems where
as alkand5] or liquid-crystal films[6]. The behavior of con-  the fluid properties are translationally invariant in at least one
fined fluids becomes even more complex when the confiningirection parallel to the substrates surfaces. As a conse-
surfaces are chemical[¥,8] or geometrically9] decorated. duence of this symmetry condition, one could only study the
For example, one can observe the formation of “bridgeresponse of fluid bridges to a shear strain in the direction
phases” composed of alternating highand low(er) density ~ Perpendicular to the direction of the translational invariance
portions of fluids. It has now been established that thesé#3,44. Recent works by Sacquiat al. showed how one
nanoscopic fluid bridges form as a generic thermodynami€ould study the phase behavior of fluids confined in low-
phase in confined systems with structured substrt®s ~ Symmetry systems using a thermodynamic-integration pro-
16). cess[15,16. In this paper we shall start from the low-
Molecularly thin films also show a fascinating rheological Symmetry system described in R¢L5] and be concerned
behavior that is important in many basic and applied probWith the response of finite size fluid bridges exposed to a
lems such as adhesion, lubrication, and friction. It has therelorsional strain. In this study made on fluid bridges under
fore been under intensive study in recent years, eitheforsion, we shall focus on the comparison of our results with
through theoretical approachfk7—26 or with the help of ~those obtained in shearing experiments, and also on the ef-
experimental devices such as the atomic force microscoptect of the fluid bridge's shape when applying the torsional
(AFM) [27-3( or the surface force apparat(SFA) [31—  Strain.
36]. A particularly interesting phenomenon is the so-called
stick-slip motion that has been observed when the confined
fluid is exposed to a shear stress. Experimentally the film is  The simulation model consists of “simple” fluid mol-
sheared by sliding the confining walls over one anotherecules(i.e., spherically symmetric moleculesonfined be-
When the walls are separated by only a few molecular diamiween the surfaces of two solid substrates. In principle, fluid
molecules interact with each other in a pairwise additive
fashion via the Lennard-JonékJ)(12,6 potential,
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wheree is the well depthg the “diameter” of a molecule,
andr the distance between the centers of a pair of particles.
However, for reasons detailed in Rp45] we replaceu(r) in

the subsequent Monte Carlo simulations in the grand canoni-
cal ensembldGCEMC) by

u(r)—ug(r)

u(r)—u(rc)+du(r)/dr|r:rc(rc—r), r<r.

0, r>rg,
)

r. being a cutoff radius whose value will be specified below.
From Eq.(2) it is clear that unlikeu(r), us;(r) is explicitly
short range.

@
B

Th fini t th pl <
e confining substrates are both planar, separated by a _ %

distances, along thez axis of the laboratory coordinate sys-

tem and semi-infinite, occupying half spaces»<z<

—s,/2 ands,/2<z<x, respectively. They are composed of FIG. 1. A schematic diagram of a simple fluitllack circle$

like atoms interacting with fluid molecules according to theconfined by two chemically decorated substrates. Outside of the

LJ(12,6 potential where the same values efand o are elliptic attractive regiongin gray) the fluid-substrate interaction is

employed as for the fluid-fluid interaction. We employ a Purely repulsive.

mean-field approximation for the fluid-substrate potential en-

ergy achieved by averaging tieriginal) fluid-substrate in- *S,/2). In Eq.(5), =0 is a measure of the “softness” with

teractions over the positions of the substrate atoms ixgpe Which the attractive part ob™(r) is turned off as a fluid

plane. This leads to molecule moves away from the center of the elliptical area,
that is from the point (0,0) in th&-y plane(see Fig. 2 in

2mepso| 2 ( o )9 ( o )3 Ref.[15]). We also have
3 15\s,/2+z |s, /2= 2|
pheb(2)— o5 (2), 3

where the plus and minus signs refer to lowke(1, z,=
—s,/2) and upper k=2, z,=+s,/2) substrates, respec- for the lower substrate and
tively, andps is the (volume number density of wall atoms.

dM(z)=
X=x coq — 6/2) +y sin(— 6/2),

Y=y cog — 6/2) — x sin(— 6/2), (6)

For simplicity we takep,o®=1 throughout this work. Since X21=x coq 6/2) +y sin( 6/2),
we treat the substrates as semi-infinite solids, the fluid-
substrate attraction is long range, thatd 'ﬂ(z)ocz*3 [see Y2l=y coq 6/2) — x sin( 6/2), )
Eq. (3)].

To model substrate surfaces with imprinted chemicalfor the upper one, in order to model the anglbetween the
nanopatterngsee Fig. 1 we modify Eq.(3) according to large axis of the two ellipsesee Fig. L

B (2)—dM(r) = plei(2) —sM(x,y;A,B, k) ohl (2) lll. THERMOMECHANICAL PROPERTIES

= @E'E%(z) — g{)gﬂ(r), (4) A. Thermodynamic considerations

From a thermodynamic perspective we refer to the “sys-
the “switching” function tem as a f|n|te.lamell§1 of the conflne(mflmte in thex and
y directions fluid having dimensionss,xXs,Xs,. The re-
1 mainder of the film and the walls constitute the environment.
(5  The lamella can exchange compressional work with the en-
x[K2 k2 . . . ,
1+ N vironment by altering, or by changing the distance between
exp k A2 B2 the imaginary planes located afs,==*0.5 andy/s,=
+0.5, which act like virtual “pistons.” In addition, the sys-
is introduced as a continuous representation of the Heavisidem can be exposed to a torsional straifsee Egs(6) and
function (i.e., the Fermi functio46]) such that®¥l(r) de-  (7)]. The mechanical work due to infinitesimal compres-
scribes the interaction between a fluid molecule and an insional and torsional strains can be expressed as
finitesimally smooth, repulsive solid surface decorated with
an a_ttracti\{e elliptical area c(f_ixed_) semiaxisA andB (and dW= E A,T,.ds,+VT,de, ®)
infinite height in the =z directiong centered at (0,0, @

wherer denotes thévecton position of a fluid molecule and

stk(x,y:A,B, k)=
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whereV=s,ss, is the volume of the lamella, the area of ~ Since the switching functioais the only part of the configu-
the « directed face of the lamella, and,, (a«=x,y,z) are  rational energy that depends @n we eventually have
diagonal elements of the stress tenor The absence of s N

off-diagonal elements of signifies that we ignore work due astk (X| Yi) (K]

to shear forces in this study. In E@) we also introduce the To= Vv Z Z g | %au(Z)
torsional stressT, conjugate to the torsional straif. In

addition, the lamella is materially and thermally coupled to 1 < i F[k]>

its environment, that is, thermodynamically it constitutes an =
open system. Hence, reversible transformations of the

lamella are governed by the grand potential whose exact dify/e can notice that sinc@(8)=Q(— 6), i.e., the grand po-
ferential is given by tential is an even function of the torsion strain, the torsion

_ _ stressT, is an odd function o).
d(T, 4.V, 0)=—SdT—Ndu+dW. ©) Another quantity of interest in the context of this work is

d the torsion modulus

(15

In Eq. (9), S denotes entropyl represents temperature, an
N is the number of fluid molecules.

2
The link between the macroscopic and molecular scales is Lo=— it 1 ( ‘?Ta) , (16)
the well-known statistical thermodynamic relatipt6] V1 962 . AT
ooex N which is the equivalent in torsion to the shear modut
QO=-"UnE=-"1n, MBp )z, (10) q up

[47] used in studies done on the shearing of confined fluids.

By a calculation parallel to the one detailed in Ref2] one

where 8=1/ksT (kg Boltzmann's constait A is the ther-  can show from Eqs(10)—(15) and(16) that

mal de Broglie wavelength and the far right side obtains after

the usual integration over momentum subspace. The configu- _£< FU FS> _ [_3
v

A3N

KRG+ — (iR

ration integral is given by 962 \
17
_ _ N
Z= vadr exi —BU(r)]. (1D From Egs.(15) and(17) it is also clear that

In Eq. (12), rN:={r,,r,, ... ry} denotes a particular con- PUgs oFF  oFI2]

figuration ofN fluid molecules and 2 90 T a0 (18
1 N N

u(rt)= > Z ; #(rij) + 2 2 [(Ppejj C. Technical aspects

[ We carried out GCEMC where the chemical potential

k . —
—sM(x.y;AB, k) 05 (2)]1=Upp+Ugs (12) temperaturdl, volumeV, and torsional straim are fixed. As

explained in detail in Ref(45], the generation of a Markov
chain ofm=1, ... M configurations{r\} in GCEMC pro-
ceeds in pairs of events: trial displacements and attempts to
create or destroy fluid molecules. Both events are realized
From Eq.(9) we have the purely thermodynamic expres-according to the probability density governing the grand ca-

sion nonical ensemble. If a particular configuratikigontainsN,

fluid molecules, the sequence Nf, displacements followed
13) by N, creation-destruction attempts constitutes a “GCEMC

cycle.” Results presented below are based upon runs of

10°—10' MC cycles withN=300. In all the simulations we
Combining Eq.(13) with the statistical expressions given in setr.=2.5[see Eq(2)].

is the configurational energy.

B. Molecular expression for the torsional stress

vT,=| 2
a6

T,m,V

Egs.(10)—(12), we obtain In what follows all quantities will be given in the custom-
ary dimensionles§.e., “reduced”) units: length is expressed
“ exp(BuN) [dzZ in units of o, energy in units of, and temperature in units
Ty=—(VBE) 1> ——— felke: iti i i
K=o A3NNI (;9 of e/kg; other quantities are expressed in terms of suitable
combination of these “basic” quantities. We employ stan-
“ expBuN) dard periodic boundary conditions at the plames=*s,/2,
)1 | dr exd —BU(rN)] y=*s,/2 wheres,=s,=30. These latter values are large
N=0  ASEND JVN enough(if A andB are small enoughto mimic an infinitely
IUrs large system with aingleisolated attractive elliptic region
( ) . (14 per substrate. Hence, in the actual simulations we associate
d6 TV the computational cell with the fluid lamella introduced in
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FIG. 2. Snapshots of two representative configurations of the (a)
system forT=0.70, u=—8.00,s,=6.0, A=8, andB=3.125.(a) T T T T T 3
0=0, (b) 6=/2.
- ~— 42

Sec. lll A. We have for the “switching parametex’= 125, L
which causess(x,y;A,B,k) to vary between zerdi.e., no

fluid-substrate attractionand one(i.e., full fluid-substrate z m ; 10

interaction [see Egs(4) and (5)] over an elliptical shell of :' 5
thicknessAr=0.2. - C w,‘ 1
" H.:C’““‘—“’““"“:\; 1-2
IV. RESULTS L 1 L L 1 3
15 10 -5 0 5 10 15
Our results were obtained far=0.70 andu= —8.0. Un- X
der the present thermodynamic conditions, and fet 60 (b)

< /2 (the torsion angle value is limited by the symmetry of

the systeny the confined fluid forms a “bridge” phase; that  FIG. 3. Contour lines=0.25(-), 0.75 (=) for T=0.70, u=
is, a highen-density portion of the fluid is stabilized be- —8.00,s,=6.0, A=8, B=3.125, andd=0. (3 p(y,2) in the x
tween the adsorbing elliptic patterns on the substratess0 plane,(b) p(x,z) in they=0 plane.

whereas a loern-density regime exists over their repulsive

outer part. This characteristiq structure is _iIIustrated by theregardless of the thermodynamic state and the sfiameA
snapshqts qf two representative configurationséfer0 and and B, see Eq.(5)] of the elliptic pattern, it exhibits the
0= /2 in Fig. 2, and by the contour plots of the local den- following f
: A o g features.
sity p(x,y,z) in Figs. 3 and 4. The plots in Fig(8& and 3b) A . . B .
y . (1) For vanishing torsional straifi.e., 6=0), T,=0 for
show sequences of “islands” along tleaxis surrounded by
a closed line of lower density. The islands are well resolvedSymmetry reasons. - .
and separated by a distance of approximatety- 1 between (2) If exposeq to a sufﬁmently'small torS|or3aI strafh
centers of neighboring islands. They indicate stratification ofl (¢) depends linearly om according to Hooke's law.
the fluid in the direction perpendicular to the substrates, ~ (3) As the torsional strain increases, the bridge responds
along thez axig). In the symmetric cas®@=0, the high- mcre_asmgly nonllnearly so that the tor5|_onal stress reaqhes a
density islands have roughly the same size in transverse dib@ximum, declines, and eventually vanishes. The maximum
rections(i.e., x or y) [see Figs. @) and 3b)]; while for 9  Of the torsion stress curve determines a yield point
= m/2, their shape changes agoes from— 3 to 3[see Figs. (0yd,T¥;d)-
4(a) and 4b)], thus reflecting the rotation of the attractive  (4) For symmetry reasons we also hawvg w/2)=0.
elliptic patterns on the substratgg|=3). These general characteristics have also been observed
Bridge phases may coexist with liquidlike or gaslike previously in the case of stress curves for simple fluid films
phases characterized by high- and lowen-density fluids, confined between planar-parallel substrates, when these films
respectively, occupying the entire volume of the systemwere exposed to a shear strain. In these latter calculations the
(similar to Fig. 4a) and 4c) in Ref.[15]) confining substrates were either chemically homogeneous
but atomically structuredi.e., discretg [42,17,37,22,41,24
or decorated with alternating striplike domains composed of
different solid material§43,44. As 6 departs from O the
fluid bridge becomes less elastic, eventually deforming plas-
The key quantity calculated in the present Monte Carldtically, until T, reaches a maximum where the torsion modu-
simulations is the torsional streds,(6) accessible via the lus u, vanishegsee Eq(16)]. ng is the maximum torsion
Egs. (13)—(15). A typical torsion curve is shown in Fig. 5; stress the fluid bridge can sustain when rotating one substrate

A. Torsion curves: general features
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FIG. 4. Contour linesp=0.25 (-), 0.75 (=) for T=0.70, u
=-8.00,5,=6.0, A=8, B=3.125, andd= /2. (a) p(y,2) in the
X11=0 plane,(b) p(x,z) in the YIXI=0 plane[see Eq(6) for the

definitions ofX[*! and Y[1].

over the other while the thermodynamic state variabjes (
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FIG. 6. Torsion stress,(6*) for A=8, B=3.125, ands,
=4.0 (A), s,=6.0 (O), s,=10.0 (@). Solid lines are intended
only to guide the eye.

gimes encountered for sheared confined fluids. Thermody-
namic states fow< 6% are mechanically stable so that the
walls “stick” to the fluid film. When 6= #¢ these states
become mechanically unstable and the walls can “rotate”
freely over the surface of the filitsee Ref[42]). From the
definition of the torsion modulus in E¢L6) and the fact that
the yield point represents a maximum of the torsion stress
curve it also follows thaju,>0 in the sticking regime and
that 4 ,<<0 in the rotating regime.

Because of the linear dependance édnof T, at small
deformations, the slope of the torsion curve #+0 gives
us u4(0). It provides an information on the stiffness of the
fluid bridge at rest(i.e., when6=0), that is, its ability to
sustain a torsional strain. In Fig. 5 the torsion modulus
#(0) computed from the expression in Ed.7) has been
used to determine the tangent to the shear stress cur@e at

T, ands,) are held fixed. These results lead us to think there=0, which also illustrates the reliability of our calculations.
should also exist for fluids exposed to a torsional strain a Furthermore, for larger substrates separations, we observe
rotating and a sticking regime that are separated by the yield decrease of the torsional yield str@¥8 and an increase of
point (6¥9, T¥%), and similar to the sticking and slipping re- the yield strain® (see Fig. 6. This behavior is again quali-

0.0025
0.002
0.0015
Teo

0.001

0.0005

FIG. 5. A typical torsion stress curv@,(6*) (where 6*
=6/ ) for A=8 andC=3.125. The solid line is intended to guide
the eye and the dotted line corresponds to the Hookean limit.

L 1 L L 1
0.05 0.1 0.15 0.2 0.25

o

1
0.3

L
0.35

1
0.4

L
0.45

0.5

tatively similar to the one observed earlier for confined fluids
exposed to a shear straisee Refs[17,41] and Fig. §a) in
Ref.[43]). It can be rationalized by an argument similar to
the one given in Ref[41]: as the number of layers in the
bridge increases, the structure of the central layers becomes
less orderedeven though the elliptic bridges do not show
any crystalline structupeand it takes less force to wring the
fluid bridge.

However in Ref[43] the yield stress obtained by shearing
monolayer up to trilayer bridges scales approximately with
the inverse wall separation, while in our case we observe a
much faster decay of the maximum torsional stress with
s, . If the bridges were solidlike their torsional stiffness
would scale linearly with their cross-sectional area and in-
versely with their length, the reason being that the area is a
measure for how manymetaphori¢ springs act “in parallel”
holding the particles together, while the length of the bridge
indicates how many springs act “in series.” Therefore when
we increase the size of a solid bridge, while maintaining its
shape, its effective torsional stiffness will grow. However,
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here we observe a decrease of the torsional yield stress with We also tried to renormalize the stress curves plotted in
1/s3, which means that the torsional stiffness of the bridgeFig. 8 in order to know whether or not the results obtained by
becomes weaker with increasing the system size even if wBock and Schoen in Ref43] concerning the universality of
assume proportionality with the area of contact, thus emphathe shear stress curves could also be applied to twisted fluid
sizing the nonsolid character of the bridges formed under théridges. However our renormalized data failed to fall on an
present conditions. unigue curve or to coincide with the universal curve obtained
We also note that the values of the torsional stress susn Ref.[43], thus pointing out another difference between the
tained by the elliptic bridges are much smaliene to two responses to shear and torsional deformations of fluid
orders of magnitudecompared with the shear stress valuesbridges. The increased perturbation of the bridge’s structure
supported by fluid bridges as reported in Ref3]. Still, a  that we pointed out in Sec. IV A precludes the use of a small-
more quantitative comparison does not make too much sen&érain approximation to describe the torsional curves in the
at this point since both the systems studied in the earliefange O< =< 6*“ similar to the one suggested by Bock and
shear work and the observables differ from those consideregchoen43].
here. The lower value o’} and its faster decay with the
wall separation can be explained qualitatively as follows: V. DISCUSSION AND CONCLUSIONS
The deformation of fluid by shearing leads to a perturbation |, this paper we employ GCEMC simulations to investi-
of the fluid bridge’s structure in only one dimension, namely,gate the rheological properties of a fluid confined between
in the direction in which the shear strain is applied. On thenanopatterned substrates of low symmetry. The interaction
other hand, the torsion of fluid bridges induces a two-petween fluid molecules and the planar substrates is purely
dimensional displacement of the particles in the fluid bridgerepulsive, i.e., the solid is not wetted by the fluid. However,
(that is, along the two lateral directiomsandy), so that the each substrate is decorated with an elliptic chemical pattern
associated perturbation of its structure is much more prothat adsorbs fluid molecules preferentially. Under favorable
nounced in this case than for sheared bridges. As a consthermodynamic conditions a higher-density portion of the
quence the ability of fluid bridges to resist torsional defor-confined fluid stabilized by the attractive chemical patterns is
mations is greatly reduced in comparison with their ability tosurrounded by a lower-density portion supported by the re-
resist shear deformation, as long as the shear strain is appli@glsive parts of the substrates, thus forming what we call a

only in one dimension as in all the previous studies. bridge phase. By rotating the elliptic patterns in opposite
directions, these bridge phases can be exposed to a torsional

strain @ and the associated torsional strdsscan be calcu-
lated from molecular expressions.

In our model shape and size of the attractive elliptic  As we can see in all our plots of ,(6), the elliptic
chemical pattern decorating the substrates turns out to haygtidges can sustain a nonvanishing torsional strain, even
significant  consequences for the vyield-point locationthough they have a noncrystalline structure. This property is
(6%, T)%). As we already mentioned in Sec. IV A, earlier g direct consequence of the lack of cylindrical symmetry of
works on fluid bridges showed that the area of the attractivghe system and can be compared to the way the fluid bridges
chemical patterns has to be large enough for bridge morin Ref.[43] show a resistance &heardeformations because
phologies to be thermodynamically stable. In this work weof their inhomogeneity in the direction of the applied shear
fixed the area of the ellipses fB7 =257 and looked at the  stress. Furthermore, the torsion curves obtained for twisted
torsion curves for different values of the large semiakis fluid bridges arequalitatively similar to those obtained for
(see Fig. 7. For the subsequent discussion it is convenient taconfined sheared fluidgeing solidlike or notin that they
introduce the aspect ratig=A/B>1 of the ellipses. exhibit a Hookean regime for small torsional strains and a

Once again we can check the good agreement between tiggeld point on account of an increasingly plastic response at
values ofu4(0) obtained from Eq(17) and the slope of the higher anglegsee Fig. 5. Yet when we begin to deform fluid
shear stress curve @=0 (see the dotted lines in Fig).7 bridges, the plastic regime appears much earlier in the case
More significantly, this time they also reveal substantial de-of torsion than for shearing. The evolution of the yield tor-
viations from Hookean behavior at very small torsionalsional stress when increasing the substrates’ separation is
strains. For example, the plastic regime begins already adlso the same for twisted and sheared fluids. In both cases we
0/ =0.05 whenr,=2 [see Figs. 5 and(€)—(e)]. As we observe a decrease ®f, (see Fig. &, but the decay of the
move away from the perfectly symmetric case=1, where yield stress is much faster in the case of tors(lwhereT}Qd
the chemical patterns degenerate to circles, the deviatiogcales approximately with gj) It also turns out that the
from the elastic linear behavior while increasidgoccurs  values of torsional stresses we obtained during this study
earlier. were always much smaller than any shear stress values ob-

For fixeds,=6.0 one can see from Table | thaf" de-  tained in previous works. These two properties can be con-
creases whileT}" increases monotonically with increasing nected to the fact that torsional deformations induce a much
aspect ratio. We observe an evolution from “soft” bridges greater perturbation in the bridge’s inner structure than shear
with low T}’,d and larger¢”® to more “rigid” ones Whereﬂgd deformations.
is larger but¢”? is smaller. This “rigidity” is also reflected When modifying the ellipses shape, i.e., their aspect ratio
by the increase ofi,(0) with r, (see Table)l r,, the evolution in the yield point permits us to distinguish

B. The impact of the ellipses shape
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FIG. 7. Torsion stress curveg,(6*) for s,=6.0, AB=25, and different aspect ratioga) r,=1.5625, (b) r,=1.9600, (c) r,

=3.2400,(d) r,=4.0000, ande) r,=5.0625. The solid line is intended to guide the eye while the dotted one corresponds to the Hookean

limit.

between soft and rigid bridges. Ag increases we have a is another consequence of the increased sensitivity of fluid
continuous change from soft bridges, which are easily disbridges to torsional deformation compared to shearing.
torted (high #* and lowT%%), to more rigid oneglow 6”4

curves obtained when changing within the theory of cor-

Many possibilities now appear for future investigations of
and higthd). The renormalization of the different torsion fluid bridges under torsion. First, we intend to work further
on the stick-rotate transition and develop a more adequate
responding statelgt6] fails to give satisfying results, which ensemble with a fixed torsional stréEgwhere the torsional
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TABLE |. Evolution of the yield point's coordinatess{(¢, T} 0.0025 — T
and of the torsion modulus at rest(0) [see Eq(17)] when modi- “AAfAA A
fying the aspect ratio, of elliptic patterns with a constant area a o &
ABm =257 bl
= . 2 %9
L] [ ]
an ® OR A
la e T)éd #4(0) ooots | o OOOOOO oce o ; .
1.5625 02% 5844810 * 4.6869< 103 To 20 U,
1.9600 0.18 1.0687x 1073 1.08853< 10 2 ooif 00  gmmtEEEL S
2.5600 0.1 1.6861x 1073 2.2708<1072 “ 5 . ngls
3.2400 0.14r 2.1054x10°° 3.8351x 1072 Lom" N safe
4.0000 01F  23864x10° 6.0061x 10" R BTN
5.0625 0.08 2.4304x 1073 8.1377x 10 2 PP DaE, i
]
0 [¢] 0.‘05 0‘.1 0.‘15 0‘.2 0.‘25 0‘.3 0.‘35 0‘.4 0.‘45 0.5
o

strain @ can fluctuate, similar to the grand isostress ensemble _ o

introduced by Bordarieet al.[42]. Another subject of inter- FIG. 8. Torsion stress curves as in Fig. 6 but on the same scale.
est will be the phase behavior of a fluid between low-(H) ra=1.5625 @) r,=1.9600, ©) r,=2.5600, @) r,
symmetry substrates. Using the thermodynamic integratiofr 3-2400, &) ro=4.0000, and &) r,=5.0625.

method for computing the grand potentialin such systems Landau’s phenomenological theory of phase transitions and

that has already been developed in R&b], different stud- h ;
. . ) ! ; . rsion modul n order parameter.
ies on the combined effects of torsion and chemical potentlatl e torsion moduluge, as an order paramete

[12,13 can be made. Eventually, a last but very interesting
direction will be to develop an analysis of phase transitions
induced by the torsion of fluid bridges with an approach M.S. is grateful for support from the Sonderforschung-
similar to what has been done in R¢#8], that is, using bereich 448 “Mesoskopische strukturierte Verbundsysteme.”
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